Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.

نویسندگان

  • Daichi Yamashita
  • Takaki Sugawara
  • Miyu Takeshita
  • Jun Kaneko
  • Yoshiyuki Kamio
  • Isao Tanaka
  • Yoshikazu Tanaka
  • Min Yao
چکیده

Pathogenic bacteria secrete pore-forming toxins (PFTs) to attack target cells. PFTs are expressed as water-soluble monomeric proteins, which oligomerize into nonlytic prepore intermediates on the target cell membrane before forming membrane-spanning pores. Despite a wealth of biochemical data, the lack of high-resolution prepore structural information has hampered understanding of the β-barrel formation process. Here, we report crystal structures of staphylococcal γ-haemolysin and leucocidin prepores. The structures reveal a disordered bottom half of the β-barrel corresponding to the transmembrane region, and a rigid upper extramembrane half. Spectroscopic analysis of fluorescently labelled mutants confirmed that the prepore is distinct from the pore within the transmembrane region. Mutational analysis also indicates a pivotal role for the glycine residue located at the lipid-solvent interface as a 'joint' between the two halves of the β-barrel. These observations suggest a two-step transmembrane β-barrel pore formation mechanism in which the upper extramembrane and bottom transmembrane regions are formed independently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.

The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation o...

متن کامل

A rivet model for channel formation by aerolysin-like pore-forming toxins.

The bacterial toxin aerolysin kills cells by forming heptameric channels, of unknown structure, in the plasma membrane. Using disulfide trapping and cysteine scanning mutagenesis coupled to thiol-specific labeling on lipid bilayers, we identify a loop that lines the channel. This loop has an alternating pattern of charged and uncharged residues, suggesting that the transmembrane region has a be...

متن کامل

Molecular basis of listeriolysin O pH dependence.

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that is an essential virulence factor of Listeria monocytogenes. LLO pore-forming activity is pH-dependent; it is active at acidic pH (<6), but not at neutral pH. In contrast to other pH-dependent toxins, we have determined that LLO pore-forming activity is controlled by a rapid and irreversible denaturation of its structure at neutral ...

متن کامل

Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore.

Staphylococcal leukocidin pores are formed by the obligatory interaction of two distinct polypeptides, one of class F and one of class S, making them unique in the family of beta-barrel pore-forming toxins (beta-PFTs). By contrast, other beta-PFTs form homo-oligomeric pores; for example, the staphylococcal alpha-hemolysin (alpha HL) pore is a homoheptamer. Here, we deduce the subunit compositio...

متن کامل

Pore Formation Mechanism of Staphylococcal Pore- forming Toxin

Y. Tanaka and M. Yao (Hokkaido Univ.) Pathogenic bacteria express pore-forming toxins (PFTs) to attack host cells. PFTs are expressed as soluble monomeric proteins, which assemble to prepore oligomer on the target cells. After forming prepore, conformational change occurs, and then the pore is formed. Although the crystal structures of monomer and pore have been determined, the detailed mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014